Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik's cube

- In a classic Rubik's cube, each of the 6 faces is covered by 9 stickers
- Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

- Each face of the cube can be turned independently
- Notation:

- The letter means turn the face clockwise 90°
\diamond For example, \mathbf{R} means turn the right face clockwise 90°
- The letter primed means turn the face counter-clockwise 90°
\diamond For example, R' means turn the right face counter-clockwise 90°
- The problem: given an initial configuration of the cube, find a shortest sequence of turns so that each face has only one color
- You may assume that you are allowed at most T turns
- It turns out that any configuration can be solved in 26 turns or less: http: //cube20.org/qtm/
- How can we formulate this problem as a dynamic program?
- Stages:
\square
- States in stage t (nodes):
- Decisions, transitions, and rewards/costs at stage t (edges):
- Source node: \square Sink node:
- Shortest/longest path?
- Minimum number of turns required to solve the cube:
- Actual sequence of turns that give the minimum number of turns to solve the cube:

2 Tetris

- You've all played Tetris before, right? Just in case...
- Tetris is a video game in which pieces fall down a 2D playing field, like this:

- Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high
- As the pieces fall, the player can rotate them 90° in either direction, or move them left and right
- When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
- The game is over once the height of bricks exceeds 20
- The problem: given a predetermined sequence of T pieces 1, determine how to place each piece in order to maximize the number of points accumulated over the course of the game
- How can we formulate this problem as a dynamic program?

[^0]- Stages:
\square
- States in stage t (nodes):
- Decisions, transitions, and rewards/costs at stage t (edges):

- Source node:

Sink node:

- Shortest/longest path?
- Maximum number of points:
- Actual placement of pieces that give the maximum number of points:

3 Big DPs and the curse of dimensionality

- How big are these DPs we just formulated?
- Tetris:
- Number of states per stage:
- Number of stages T
\Rightarrow Number of nodes:
- Rubik's cube:
- Number of states per stage:
- Number of stages T
\Rightarrow Number of nodes:
- The number of states is huge for both these DPs!
\Rightarrow The DPs we formulated (as-is) are not solvable using today's computing power
- This is known as the curse of dimensionality in dynamic programming
- Approximate dynamic programming is an active area of research that tries to address the curse of dimensionality in various ways
- For example, for Tetris: https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf

[^0]: ${ }^{1}$ Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.

